首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   17篇
  2023年   3篇
  2021年   9篇
  2020年   7篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   10篇
  2013年   10篇
  2012年   6篇
  2011年   11篇
  2010年   8篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   11篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   9篇
  1998年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   5篇
  1983年   7篇
  1982年   11篇
  1980年   4篇
  1979年   8篇
  1978年   6篇
  1977年   4篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1968年   4篇
  1967年   2篇
  1963年   2篇
排序方式: 共有283条查询结果,搜索用时 281 毫秒
91.
With cell culture titers and productivity increasing in the last few years, pressure has been placed on downstream purification to look at alternative strategies to meet the demand of biotech products with high dose requirements. Even when the upstream process is not continuous (perfusion based), adopting a more productive and/or continuous downstream process can be of significant advantage. Due to the recent trend in exploring continuous processing options for biomolecules, several enabling technologies have been assessed at Biogen. In this paper, we evaluate the capability of one of these technologies to streamline and improve our downstream mAb purification platform. Current conventional downstream polishing steps at Biogen are operated in flow‐through mode to achieve higher loadings while maintaining good selectivity. As titers increase, this would result in larger columns and larger intermediate product pool holding tanks. A semicontinuous downstream process linking the second and third chromatography steps in tandem can reduce/eliminate intermediate holding tanks, reduce overall processing time, and combine unit operations to reduce validation burdens. A pool‐less processing technology utilizing inline adjustment functionality was evaluated to address facility fit challenges for three high titer mAbs. Two different configurations of polishing steps were examined: (i) anion exchange and hydrophobic interaction and (ii) anion exchange and mixed mode chromatography. Initial laboratory scale proof of concept studies showed comparable performance between the batch purification process and the pool‐less process configuration.  相似文献   
92.
93.
Diafiltration is used for final formulation of essentially all biotherapeutics. Several studies have demonstrated that buffer/excipient concentrations in the final diafiltered product can be different than that in the diafiltration buffer due to interactions between buffer species and the protein product. However, recent work in our lab has shown variations in solution pH that are largely independent of the protein concentration during the first few diavolumes. Our hypothesis is that these pH variations are due to nonidealities in the acid‐base equilibrium coefficient. A model was developed for the diafiltration process accounting for the ionic strength dependence of the pKa. Experimental results obtained using phosphate and histidine buffers were in excellent agreement with model predictions. A decrease in ionic strength leads to an increase in the pKa for the phosphate buffer, causing a shift in the solution pH, even under conditions where the initial feed and the diafiltration buffer are at the same pH. This effect could be eliminated by matching the ionic strength of the feed and diafiltration buffer. The experimental data and model provide new insights into the factors controlling the pH profile during diafiltration processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1555–1560, 2017  相似文献   
94.
Protein A chromatography is currently the industry gold‐standard for monoclonal antibody and Fc‐fusion protein purification. The high cost of Protein A, however, makes resin lifetime and resin reuse an important factor for process economics. Typical resin lifetime studies performed in the industry usually examine the effect of resin re‐use on binding capacity, yield, and product quality without answering the fundamental question of what is causing the decrease in performance. A two part mechanistic study was conducted in an attempt to decouple the effect of the two possible factors (resin hydrolysis and/or degradation vs. resin fouling) on column performance over lifetime of the most commonly used alkali‐stable Protein A resins (MabSelect SuRe and MabSelect SuRe LX). The change in binding capacity as a function of sodium hydroxide concentration (rate of hydrolysis), temperature, and stabilizing additives was examined. Additionally, resin extraction studies and product cycling studies were conducted to determine cleaning effectiveness (resin fouling) of various cleaning strategies. Sodium hydroxide‐based cleaning solutions were shown to be more effective at preventing resin fouling. Conversely, cold temperature and the use of stabilizing additives in conjunction with sodium hydroxide were found to be beneficial in minimizing the rate of Protein A ligand hydrolysis. An effective and robust cleaning strategy is presented here to maximize resin lifetime and thereby the number of column cycles for future manufacturing processes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:708–715, 2017  相似文献   
95.
Divisible load theory is a methodology involving the linear and continuous modeling of partitionable computation and communication loads for parallel processing. It adequately represents an important class of problems with applications in parallel and distributed system scheduling, various types of data processing, scientific and engineering computation, and sensor networks. Solutions are surprisingly tractable. Research in this area over the past decade is described.  相似文献   
96.
97.
Biologics manufacturing is capital and consumable intensive with need for advanced inventory planning to account for supply chain constraints. Early-stage process design and technology transfer are often challenging due to limited information on process variability regarding bioreactor titer, process yield, and product quality. Monte Carlo (MC) methods offer a stochastic modeling approach for process optimization where probabilities of occurrence for process inputs are incorporated into a deterministic model to simulate more likely scenarios for process outputs. In this study, we explore MC simulation-based design of a monoclonal antibody downstream manufacturing process. We demonstrate that this probabilistic approach offers more representative outcomes over the conventional worst-case approach where the theoretical minimum and maximum values of each process parameter are used without consideration for their probability of occurrence. Our work demonstrates case studies on more practically sizing unit operations to improve consumable utilization, thereby reducing manufacturing costs. We also used MC simulations to minimize process cadence by constraining the number of cycles per unit operation to fit facility preferences. By factoring in process uncertainty, we have implemented MC simulation-based facility fit analyses to efficiently plan for inventory when accounting for process constraints during technology transfer from lab-scale to clinical or commercial manufacturing.  相似文献   
98.
The anthracyclin antineoplastic agent doxorubicin (Adriamycin) was linked by four different methods of linkage to DalB02, an IgG1 murine monoclonal antibody (mAb) against surface-associated antigens on human chronic lymphocytic leukaemia (CLL) B cells. All the four conjugates fully retained the immunoreactivity of the parent DalB02. When the inhibitory effect of these conjugates was evaluated in vitro against the target D10–1 cells (a clone derived from an Epstein-Barr-virus-transformed human CLL B cell line that binds DalB02) it was observed that one conjugate was more potent than the free drug but the others were not. When131I-labelled unmodified DalB02 and the131I-labelled DalB02-containing conjugate that was found to be potent were injected i.v. into nude mice bearing a subcutaneous D10–1 xenograft, the percentages of the injected dose (%ID) of both131I-DalB02 and the131I-DalB02-containing conjugate that localized in the tumour were much higher than the %ID of the respective preparations that localized in normal tissues of D10–1-xenografted mice. The systemic toxicity of the conjugate was less than that of the free drug. At an equitoxic dose level, this conjugate was a more effective inhibitor of established D10–1 xenografts than the free drug.This study was supported by grants from the Medical Research Council of Canada (grant MT 10964) and the Cancer Research Society Inc., Montreal, Canada  相似文献   
99.
Direct anaerobic bioconversion of cellulosic substances into ethanol by Clostridium thermocellum ATCC 27405 has been carried out at 60 degrees C and pH 7.0 (initial for 100 L) under continuous sparging of oxygen free nitrogen in a culture vessel. Raw bagasse, mild alkali-treated bagasse, and solka floc were used as substrates. The extent of conversion of raw bagasse (cellulose, 50%; hemicellulose, 25%; lignin, 19%) was observed as 52% (w/w) and 79% (w/w) in the case of mild alkali and steam-treated bagasse (cellulose, 72%; hemicellulose, 11%; lignin, 12%), respectively. Use of bagasse concentration above 10 g/L showed a decreased rate in ethanol production. An inoculum age between 28-30 h and cell mass content of 0.027-0.036 g/L (dry basis) were used. The results obtained with raw and pretreated bagasse have been compared with those of highly pure Solka Floc (hemicellulose, 10%). Studies on the product inhibition indicated a linear fall of the percent of survivors with time. An Arrhenius type correlation between the cell decay rate constant and the product concentration was predicted. Even at low levels, the inhibitory effects of products on cell viability, the specific growth rate, and extracellular cellulase enzyme were observed.  相似文献   
100.
Panda  T.  Bisaria  V. S.  Ghose  T. K. 《Biotechnology letters》1983,5(11):767-772
Biotechnology Letters - For enhanced production of cellulase and xylanase by the mixed culture ofT. reesei D1-6 andA. wentii Pt 2804, the composition of medium has been optimized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号